Descarte's rule of signs:

a) If $f(x)$ be a polynomial with real coefficients.

The no. of positive roots of the equation $f(x)=0$
is either equal to the no. of changes of sign in the successive coefficients of $f(x)$ or less than that of changes of sign by an even number.
i.e. if v be the no. of changes of sign in the successive coefficients of $f(x)$ \&
if r be the no. of $(+)$ ve roots then $v-r=$ even positive number
b) The no. of negative roots of the equation $f(x)=0$
is either equal to the no. of changes of sign in the successive coefficients of $f(-x)$
or less than that of changes of sign by an even number
Ex: Apply Descarte's rule of signs to determine the nature of roots of $x^{4}+x^{2}+x-1=0$
Ans: Let $f(x)=x^{4}+x^{2}+x-1$

Sign of coeff. of	x^{4}	x^{2}	x	constant	No. of changes in sign
$f(x)$	+	+	+	-	1
$f(-x)$	+	+	-	-	1

By Descarte's rule of signs one positive root, one negative root. Since the equation is of degree four therefore it has four roots. Hence no. of imaginary root is $4-2=2$

Ex: Apply Descarte's rule of signs to find the nature of the roots of $x^{8}+1=0$ $f(x)=x^{8}+1 \because$ no change in sign in coeff. of $f(x) \therefore$ no (+)ve roots. Similarly there is no change in sign in coeff. of $f(-x) \therefore$ no (-)ve roots. Therefore all the roots are imaginary. Ex: Apply Descarte's rule of signs to find the nature of the roots of $x^{3}+1=0$ $f(x)=x^{3}+1 \because$ no change in sign in coeff. of $f(x) \therefore$ no (+)ve roots. Similarly there is one change in sign in coeff. of $f(-x) \therefore$ one (-)ve root. Therefore all other roots are imaginary.

From Descarte's rule of signs we cannot obtain exact no. of real roots of a polynomial equation $f(x)=0$. But by strum's theorem we can find exact no. of real roots

Def: Sturm's functions

Let $f(x)$ be a polynomial of x of degree n. Let $f^{\prime}(x)$ be the first derivative.
Divide $f(x)$ by $f^{\prime}(x)$ and let $-f_{2}(x)$ be the remainder
Now divide $f^{\prime}(x)$ by $f_{2}(x)$ and let the remainder be $-f_{3}(x)$.
Continue this process till we get the last remainder.
The functions $f(x), f^{\prime}(x), f_{2}(x), f_{3}(x),-------, f_{n}(x)$ are called sturm's function.
If $f(x)=0$ has no equal roots, then last Sturm's function $f_{n}(x)$ is constant.
\therefore we have $(n+1)$ Sturm's function.
Sturm's theorem: (All roots are unequal)
Let $f(x)$ be a polynomial in x of degree n. Let a, b be any two real nos $(a<b)$. then the no. of distinct real roots of $f(x)=0$ lying between $a \& b$ is equal to the difference between no. of changes of signs when x is put equal to a and the no. of changes of signs when x is put equal to b in the $(n+1)$
Sturm's functions

Conditions that all the roots are real \& distinct:

For a polynomial $f(x)$ of degree n with leading coefficient positive there are $n+1$ Sturm's functions
\& the leading coefficients of all these functions must be positive

Ex: Use Sturm's functions to show the roots of the equation $x^{3}+3 x^{2}-3=0$ are real \& distinct.
$f(x)=x^{3}+3 x^{2}-3 \therefore f^{\prime}(x)=3 x^{2}+6 x$ take $f_{1}(x)=x^{2}+2 x$ dividing $f(x)$ by $f_{1}(x)$ remainder is $-2 x-3 \therefore f_{2}(x)=2 x+3$ again dividing $f_{1}(x)$ by $f_{2}(x)$ remainder is $-3 \therefore f_{3}(x)=3$ \therefore Sturm's functions are $f(x)=x^{3}+3 x^{2}-3, f_{1}(x)=x^{2}+2 x, f_{2}(x)=2 x+3 \& f_{3}(x)=3$ $f(x)$ is a polynomial of x of degree 3 there are 4 Sturm's functions \& leading coefficients are positive \therefore all the roots are real \& distinct.

Ex: Calculate Sturm's functions and locate the position of the real roots of $x^{3}-3 x-1=0$
Let $f(x)=x^{3}-3 x-1 f^{\prime}(x)=3 x^{2}-3$ take $f_{1}(x)=x^{2}-1$ dividing $f(x)$ by $f_{1}(x)$ remainder is $-2 x-1 \therefore f_{2}(x)=2 x+1$ again dividing $f_{1}(x)$ by $f_{2}(x)$ remainder is $-3 \therefore f_{3}(x)=3$ \therefore Sturm's functions are

$$
f(x)=x^{3}-3 x-1, f_{1}(x)=x^{2}-1, f_{2}(x)=2 x+1 \& f_{3}(x)=5
$$

sign of x	$f(x)$ $=x^{3}-3 x-1$	$f_{1}(x)=x^{2}-1$	$f_{2}(x)=2 x+1$	$f_{3}(x)=5$	No. of changes of sign
$-\infty$	-	+	-	+	3
0	-	-	+	+	
∞	+	+	+	+	1
-2	-	+	-	+	0
-1	+	0	-	+	3
0	-	-	+	+	2
1	-	0	+	+	1
2	+	+	+	+	1

For $x=-\infty$ no. of changes in sign of Sturm's functions are 3
For $x=0$ no.of changes in sign of Sturm's functions is 1
\therefore number ofnegative roots $=3-1=2$.
For $x=\infty$ no. of changes in sign of Sturm's functions is 0 \therefore number of positive roots $=1-0=1$
For $x=-2$ no.of changes in sign of Sturm's functions is 3
For $x=-1$ no.of changes in sign of Sturm's functions is 2

$$
\therefore \text { one root in }(-2,-1)
$$

For $x=0$ no. of changes in sign of Sturm's functions is 1 \therefore one root in $(-1,0)$
For $x=1$ no.of changes in sign of Sturm's functions is 1
For $x=2$ no. of changes in sign of Sturm's functions is 0 \therefore one root in $(1,2)$

