Descarte's rule of signs:

a) If f(x) be a polynomial with real coefficients. The no. of positive roots of the equation f(x) = 0 is either equal to the no. of changes of sign in the successive coefficients of f(x) or less than that of changes of sign by an even number.

i.e. if *v* be the no. of changes of sign in the successive coefficients of f(x) & if *r* be the no. of (+)ve roots then v - r = even positive number

b) The no. of negative roots of the equation f(x) = 0 is either equal to the no. of changes of sign in the successive coefficients of f(-x) or less than that of changes of sign by an even number

Ex: Apply Descarte's rule of signs to determine the nature of roots of $x^4 + x^2 + x - 1 = 0$ Ans: Let $f(x) = x^4 + x^2 + x - 1$

Sign of coeff. of	<i>x</i> ⁴	<i>x</i> ²	x	constant	No. of changes in sign
f(x)	+	+	+	—	1
f(-x)	+	+	_	_	1

By Descarte's rule of signs one positive root, one negative root. Since the equation is of degree four therefore it has four roots. Hence no. of imaginary root is 4 - 2 = 2

Ex: Apply Descarte's rule of signs to find the nature of the roots of $x^8 + 1 = 0$ $f(x) = x^8 + 1 \because$ no change in sign in coeff. of $f(x) \therefore$ no (+)ve roots. Similarly there is no change in sign in coeff. of $f(-x) \therefore$ no (-)ve roots. Therefore all the roots are imaginary.

Ex: Apply Descarte's rule of signs to find the nature of the roots of $x^3 + 1 = 0$ $f(x) = x^3 + 1$: no change in sign in coeff. of $f(x) \therefore$ no (+)ve roots. Similarly there is one change in sign in coeff. of $f(-x) \therefore$ one (-)ve root. Therefore all other roots are imaginary. From Descarte's rule of signs we cannot obtain exact no. of real roots of a polynomial equation f(x) = 0. But by strum's theorem we can find exact no. of real roots

Def: Sturm's functions

Let f(x) be a polynomial of x of degree n. Let f'(x) be the first derivative.

Divide f(x) by f'(x) and let $-f_2(x)$ be the remainder

Now divide f'(x) by $f_2(x)$ and let the remainder be $-f_3(x)$. Continue this process till we get the last remainder.

The functions f(x), f'(x), $f_2(x)$, $f_3(x)$, -----, $f_n(x)$ are called sturm's function.

If f(x) = 0 has no equal roots, then last Sturm's function $f_n(x)$ is constant. \therefore we have (n + 1) Sturm's function.

Sturm's theorem: (All roots are unequal)

Let f(x) be a polynomial in x of degree n. Let a, b be any two real nos (a < b). then the no. of distinct real roots of f(x) = 0 lying between a & bis equal to the difference between no. of changes of signs when x is put equal to aand the no. of changes of signs when x is put equal to b in the (n + 1)

Sturm's functions

Conditions that all the roots are real & distinct:

For a polynomial f(x) of degree n with leading coefficient positive there are n + 1 Sturm's functions

& the leading coefficients of all these functions must be positive

Ex: Use Sturm's functions to show the roots of the equation $x^3 + 3x^2 - 3 = 0$ are real & distinct.

 $f(x) = x^3 + 3x^2 - 3 \therefore f'(x) = 3x^2 + 6x \text{ take } f_1(x) = x^2 + 2x$ dividing f(x) by $f_1(x)$ remainder is $-2x - 3 \therefore f_2(x) = 2x + 3$ again dividing $f_1(x)$ by $f_2(x)$ remainder is $-3 \therefore f_3(x) = 3$ \therefore Sturm's functions are

 $f(x) = x^3 + 3x^2 - 3$, $f_1(x) = x^2 + 2x$, $f_2(x) = 2x + 3 \& f_3(x) = 3$ f(x) is a polynomial of x of degree 3

there are 4 Sturm's functions & leading coefficients are positive ∴ all the roots are real & distinct. Ex: Calculate Sturm's functions and locate the position of the real roots of $x^3 - 3x - 1 = 0$

Let $f(x) = x^3 - 3x - 1$ $f'(x) = 3x^2 - 3$ take $f_1(x) = x^2 - 1$ dividing f(x) by $f_1(x)$ remainder is -2x - 1 \therefore $f_2(x) = 2x + 1$ again dividing $f_1(x)$ by $f_2(x)$ remainder is -3 \therefore $f_3(x) = 3$ \therefore Sturm's functions are

 $f(x) = x^3 - 3x - 1, f_1(x) = x^2 - 1, f_2(x) = 2x + 1 \& f_3(x) = 5$

sign of	f(x)	$f_1(x) = x^2 - 1$	$f_2(x) = 2x + 1$	$f_3(x) = 5$	No. of changes of sign
x	$= x^3 - 3x - 1$				
-∞`	_	+	_	+	3
0	_	_	+	+	1
∞	+	+	+	+	0
-2	-	+	-	+	3
-1	+	0	-	+	2
0	-	-	+	+	1
1	-	0	+	+	1
2	+	+	+	+	0

For $x = -\infty$ no. of changes in sign of Sturm's functions are 3 For x = 0 no. of changes in sign of Sturm's functions is 1 \therefore number of negative roots = 3 - 1 = 2.

For $x = \infty$ no. of changes in sign of Sturm's functions is 0 \therefore number of positive roots = 1 - 0 = 1

For x = -2 no. of changes in sign of Sturm's functions is 3 For x = -1 no. of changes in sign of Sturm's functions is 2 \therefore one root in (-2, -1)

For x = 0 no. of changes in sign of Sturm's functions is 1 \therefore one root in (-1,0)

For x = 1 no. of changes in sign of Sturm's functions is 1 For x = 2 no. of changes in sign of Sturm's functions is 0 \therefore one root in (1,2)