BNC Mathematics Hons. Sem - V

- Let S be the event space of the random experiment E. If E is repeated *n* times then the event space of the compound experiment is $S^n = S \times S \times --- \times S$
- Bernoulli trials: S consists of two points 'success' & 'failure' & probability of 'success' or 'failure' in each trial is constant.
- <u>Binomial law:</u> If A_i denotes the event 'exactly i successes' then $P(A_i) = \binom{n}{i} p^i q^{n-i}$ for i = 0, 1, 2, ---, n
- The most probable no. of successes in Bernoullian sequence of n trials is the

integers i_m given by $(n + 1)p - 1 \le i_m \le (n + 1)p$

- <u>Poisson trials</u>: S consists of two points 'success' & 'failure' & probability of 'success' or 'failure' in each trial is not constant.
- Poisson approximation to Binomial law: $\lim_{n\to\infty} {n \choose i} p^i q^{n-i} = e^{-\mu} \frac{\mu^i}{i!}$, where $\mu = \frac{p}{n}$

- Random variable: $X: S \rightarrow R$
- X is discrete or continuous according range of X is discrete or continuous.
- Event $X = a \equiv \{U \mid X(U) = a\}$ \therefore $P(X = a) = P\{U \mid X(U) = a\}$
- X is one dimensional R.V. taking values $x_1, x_2, ---then p_i = Prob(X =$

- D1. Let E be a random experiment with event space S having m event points. if we repeat the random experiment under identical conditions n times then we have n independent trials of E & is denoted by E_n and the corresponding event space is denoted by $S^n = S \times S \times --- \times S$,
- *i.e.* certesian product of S n times, containg m^n event points.
- where each event point is an n tuple.
- D2. Bernoulli trials: If the random experiment be such that its event space consists of only two event points 'success' & 'failure', then a sequence of independent trials of the experiment will be called a Bernoullian sequence of trials provided the probability of 'success' or 'failure' in each trial is constant.
- Ex: if an unbiased coin is tossed n times under identical conditions then we have Bernoulli trials where p is the probability of head i.e. success in each trial is $\frac{1}{2}$ & probability of tail i.e. failure is $\frac{1}{2}$.

Binomial law: If A_i denotes the event 'exactly i successes' ($i \le n$) in Bernoulli trials of the random experiment E.

then $P(A_i) = {n \choose i} p^i q^{n-i}$ for i = 0, 1, 2, ---, n

where p is the probability of success in each trial & q = 1 - p

Ex: A die is thrown 10 times in succession. Find the probability of obtaining six at least once.

Soln: Here n=10, p=probability of six in a throw=1/6 & A be the event at least one six in 10 throws.

Then
$$\bar{A}$$
 is the event no six in 10 throws. $\therefore P(\bar{A}) = \binom{10}{0} p^0 q^{10} = (\frac{5}{6})^{10} \therefore P(A) = 1 - (\frac{5}{6})^{10}$

Theorem: the most probable no. of successes in Bernoullian sequence of n trials is the

integers i_m given by $(n + 1)p - 1 \le i_m \le (n + 1)p$ where p is the constant probability of success in each trial

- <u>Poisson trials</u>: A sequence of independent trials of a random experiment E the event space of which contains two points success & failure, is called a poisson sequence of trials if the probability of success in each trial is not constant but varies from one trial to another.
- Ex: consider three trials & the probabilities of success are p_1, p_2, p_3 . the event space is $\{s, f\} \times \{s, f\} \times \{s, f\}$ = $\{(s, s, s), (s, s, f), (s, f, s), (f, s, s), (f, f, s), (f, s, f), (s, f, f), (f, f, f)\}$ Let event $A_i = i$ success $\therefore A_3 = \{(s, s, s)\}, A_2 = \{(s, s, f), (s, f, s), (f, s, s)\}$ $A_1 = \{(f, f, s), (f, s, f), (s, f, f)\}, A_0 = \{(f, f, f)\}$ $\therefore P(A_0) = q_1q_2q_3 P(A_1) = q_1q_2p_3 + q_1p_2q_3 + p_1q_2q_3,$ $P(A_2) = p_1p_2q_3 + p_1q_2p_3 + q_1p_2p_3 \& P(A_3) = p_1p_2p_3$ Poisson approximation to Binomial law:

If $p = \frac{\mu}{n}$, where μ is a positive constant, 0 , <math>n is a positive integer, then $\lim_{n \to \infty} {n \choose i} p^i q^{n-i} = e^{-\mu} \frac{\mu^i}{i!}$ Probability distribution:

D1. If corresponding to every point U of an event space S we have by a given rule, a unique real value of X = X(U), i.e. X is a real valued function defined on S. then X is called a random variable. i.e. $X: S \rightarrow R$. The range of function X will be called the spectrum of the random variable.

The spectrum may be discrete or continuous and accordingly the random variable is said to be discrete or continuous.

R1. If $X_1 \& X_2$ are random variables then

(1) X_1X_2 , $C_1X_1 + C_2X_2$, $\max\{X_1, X_2\}$, $\min\{X_1, X_2\}$ are also random variables

(2) If X is a random variable & f is a continuous or increasing function then f(X) is also a R.V.

(3) If $\{X_n\}$ be a sequence of random variable then sup X_n , $Inf X_n$,

Lim Sup X_n , *Lim Inf* X_n all are R.V.

D2. By the event X = a we mean the set of all event points U for which X(U) = a*i.e.* $X = a \equiv \{U \mid X(U) = a\} \therefore P(X = a) = P\{U \mid X(U) = a\}$

D3. Let *X* be an one – dimensional discrete R.V.

taking at most a countably infinite no. of values $x_1, x_2, ---$

If with each possible outcomes we associate a no. $p_i = Prob(X = x_i) = p(x_i)$

called the probability of x_i such that $p(x_i) \ge 0$ & $\sum_i p(x_i) = 1$

then the function *p* is called the probability mass function (p. m. f) of the *R*.*V*.*X*

& the set $\{p(x_i)\}$ is called the probability distribution of the Random variable X

<u>D4.</u> The distribution function of a random variable X is a function of real variable x to be denoted by $F_X(x)$ or F(x) defined in $(-\infty, \infty)$ by

 $F(x) = P(-\infty < X \le x)$

Properties of distribution function:

P1. If a < b & if F(x) be the distribution function of the random variable X then $P(a < X \le b) = F(b) - F(a)$

Events $(-\infty < X \le a)$ & $(a < X \le b)$ are mutually exclusive & $(-\infty < X \le a) + (a < X \le b) = (-\infty < X \le b)$ $\therefore P\{(-\infty < X \le a) + (a < X \le b)\} = P(-\infty < X \le b)$ $\Rightarrow P(-\infty < X \le a) + P(a < X \le b) = P(-\infty < X \le b)$ $\therefore F(a) + P(a < X \le b) = F(b)$ i.e. $P(a < X \le b) = F(b) - F(a)$ $F(b) - F(a) = P(a < X \le b) \ge 0$

 $\therefore F(b) \ge F(a)$ if $b > a \therefore F(x)$ is a monotonic non decreasing function of x

 $P(a \le X \le b) = F(b) - F(a) + P(X = a)$ P(a < X < b) = F(b) - F(a) - P(X = b) $P(a \le X < b) = F(b) - F(a) - P(X = b) + P(X = a)$ P2. $F(-\infty) = 0$. $F(\infty) = 1$. F(a) - F(a - 0) = P(X = a). F(a + 0) = F(a)Let $A_n = (-\infty < X \le -n)$ then $\{A_n\}$ is a contracting sequence of events such that $\lim A_n = \varphi$ $\therefore P\left(\lim_{n \to \infty} A_n\right) = P(\varphi) = 0 - - - (1)$ $P(A_n) = P(-\infty < X \le -n) = F(-n) \therefore \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} F(-n) = F(-\infty) - - -(2)$ $\therefore P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n) \quad \therefore \quad By(1) \& (2) \quad F(-\infty) = 0$ Let $A_n = (-\infty < X \le n)$ then $\{A_n\}$ is a expanding sequence of events such that $\lim A_n = S$ $\therefore P\left(\lim_{n \to \infty} A_n\right) = P(S) = 1 - - -(1)$ $P(A_n) = F(n) \therefore \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} F(n) = F(\infty) - - -(2)$ $: P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n) \quad \therefore \quad By(1) \& (2) \quad F(\infty) = 1$

Let
$$A_n = \left(a - \frac{1}{n} < X \le a\right)$$
 then $\{A_n\}$ is a contracting sequence of events such that
 $\lim_{n \to \infty} A_n = (X = a) \therefore P(\lim_{n \to \infty} A_n) = P(X = a) - - - (1)$
 $P(A_n) = F(a) - F\left(a - \frac{1}{n}\right) \therefore \lim_{n \to \infty} P(A_n) = F(a) - F(a - 0) - - - (2)$
 $\therefore P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n) \therefore By(1) \& (2) \quad F(a) - F(a - 0) = P(X = a)$

If P(X = a) > 0 then F(x) has a jump discontinuity on the left at x = a

Let $A_n = \left(a < X \le a + \frac{1}{n}\right)$ then $\{A_n\}$ is a contracting sequence of events such that $\lim_{n \to \infty} A_n = \varphi \therefore P(\lim_{n \to \infty} A_n) = 0 - - - (1)$

$$P(A_n) = F\left(a + \frac{1}{n}\right) - F(a) \therefore \lim_{n \to \infty} P(A_n) = F(a+0) - F(a) - - -(2)$$

$$\therefore P\left(\lim_{n\to\infty}A_n\right) = \lim_{n\to\infty}P(A_n) \quad \therefore \quad By(1) \& (2) \quad F(a+0) = F(a)$$

 \therefore F(x) is continuous on the right at all points

Ex: The spectrum of the random variable X consists of the points 1, 2, ---, n &

P(X = i) is proportional to $\frac{1}{i(i + 1)}$. determine the distribution function of *X*.

Compute $P(3 < X \le n) \& P(X > 5)$

Soln: Let $P(X = i) = \frac{k}{i(i+1)}$

$$\therefore 1 = \sum_{i=1}^{n} P(X=i) = k \sum_{i=1}^{n} \frac{1}{i(i+1)} = k \sum_{i=1}^{n} (\frac{1}{i} - \frac{1}{i+1}) = k \left(1 - \frac{1}{n}\right) = \frac{kn}{n+1} \therefore k = \frac{n+1}{n}$$

$$\therefore P(X = i) = \frac{n+1}{ni(i+1)} \text{ If } k \text{ is an integer then } F(k) = P(X \le k) = \frac{n+1}{n} \sum_{i=1}^{n} \frac{i}{i+1} = \frac{k(n+1)}{n(k+1)}$$

If
$$k \le x < k+1$$
 then $F(x) = P(X \le x) = \sum_{i=1}^{k} P(X=i) = F(k) = \frac{k(n+1)}{n(k+1)}$

$$P(3 < X \le n) = F(n) - F(3) = 1 - \frac{3(n+1)}{4n} = \frac{n-3}{4n}$$
$$P(X > 5) = 1 - P(X \le 5) = 1 - F(5) = 1 - \frac{5(n+1)}{6n} = \frac{n-5}{6n}$$

k k+1

Ex: The distribution function F(x) of a random variable X is defined as $F(x) = A; -\infty < x < -1$ $= B; -1 \le x < 0$

 $= C; 0 \le x < 2$

= D; $2 \le x < \infty$, where A, B, C & D are constants. Determine the values of A, B, C & D.

Given that
$$P(X = 0) = \frac{1}{6} \& P(X > 1) = \frac{2}{3}$$

Soln:
$$A = F(-\infty) = 0$$
, $D = F(\infty) = 1$, $\frac{1}{6} = F(0) - F(0 - 0) = C - B - - -(1)$

$$\frac{2}{3} = P(X > 1) = 1 - P(X \le 1) = 1 - F(1) = 1 - C \quad \therefore \ C = 1 - \frac{2}{3} = \frac{1}{3}$$

From (1) putting the value of $C, B = \frac{1}{3} - \frac{1}{6} = \frac{1}{6}$