BNC Mathematics Hons. Sem - V

- Let S be the event space of the random experiment E. If E is repeated n times then the event space of the compound experiment is $S^{n}=S \times S \times---\times S$
- Bernoulli trials: S consists of two points 'success' \& 'failure' \& probability of 'success' or 'failure' in each trial is constant.
- Binomial law: If A_{i} denotes the event 'exactly i successes' then $P\left(A_{i}\right)=\binom{n}{i} p^{i} q^{n-i}$ for $i=0,1,2,----, n$
- The most probable no. of successes in Bernoullian sequence of n trials is the integers i_{m} given by $(n+1) p-1 \leq i_{m} \leq(n+1) p$
- Poisson trials: S consists of two points 'success' \& 'failure' \& probability of 'success' or 'failure' in each trial is not constant.
- Poisson approximation to Binomial law: $\lim _{n \rightarrow \infty}\binom{n}{i} p^{i} q^{n-i}=e^{-\mu} \frac{\mu^{i}}{i!}$, where $\mu=\frac{p}{n}$
- Random variable: $\mathrm{X}: \mathrm{S} \rightarrow \mathrm{R}$
- X is discrete or continuous according range of X is discrete or continuous.
- Event $X=a \equiv\{U \mid X(U)=a\} \therefore P(X=a)=P\{U \mid X(U)=a\}$
- X is one dimensional R.V. taking values $x_{1}, x_{2},---$ then $p_{i}=\operatorname{Prob}(X=$

D1. Let E be a random experiment with event space S having m event points. if we repeat the random experiment under identical conditions n times then we have n independent trials of $\mathrm{E} \&$ is denoted by E_{n} and the corresponding event space is denoted by $S^{\mathrm{n}}=S \times \mathrm{S} \times---\times S$, i.e.certesian product of $S \mathrm{n}$ times, containg m^{n} event points. where each event point is an n - tuple.

D2. Bernoulli trials: If the random experiment be such that its event space consists of only two event points 'success' \& 'failure', then a sequence of independent trials of the experiment will be called a Bernoullian sequence of trials provided the probability of 'success' or 'failure' in each trial is constant.
Ex: if an unbiased coin is tossed n times under identical conditions then we have Bernoulli trials where p is the probability of head i.e. success in each trial is $1 / 2$ \& probability of tail i.e. failure is $1 / 2$.

Binomial law: If A_{i} denotes the event 'exactly i successes' $(i \leq n)$ in Bernoulli trials of the random experiment E.
then $P\left(A_{i}\right)=\binom{n}{i} p^{i} q^{n-i}$ for $i=0,1,2,----, n$
where p is the probability of success in each trial \& $q=1-p$
Ex: A die is thrown 10 times in succession. Find the probability of obtaining six at least once.
 throws.

Then \bar{A} is the event no six in 10 throws. $\therefore P(\bar{A})=\binom{10}{0} p^{0} q^{10}=\left(\frac{5}{6}\right)^{10} \therefore P(A)=1-\left(\frac{5}{6}\right)^{10}$
Theorem: the most probable no. of successes in Bernoullian sequence of n trials is the integers i_{m} given by $(n+1) p-1 \leq i_{m} \leq(n+1) p$ where p is the constant probability of success in each trial

- Poisson trials: A sequence of independent trials of a random experiment E the event space of which contains two points success \& failure, is called a poisson sequence of trials if the probability of success in each trial is not constant but varies from one trial to another.
- Ex: - consider three trials \& the probabilities of success are p_{1}, p_{2}, p_{3}.
the event space is $\{s, f\} \times\{s, f\} \times\{s, f\}$
$=\{(s, s, s),(s, s, f),(s, f, s),(f, s, s),(f, f, s),(f, s, f),(s, f, f),(f, f, f)\}$
Let event $A_{i}=i$ success $\therefore A_{3}=\{(s, s, s)\}, A_{2}=\{(s, s, f),(s, f, s),(f, s, s)\}$
$A_{1}=\{(f, f, s),(f, s, f),(s, f, f)\}, A_{0}=\{(f, f, f)\}$
$\therefore P\left(A_{0}\right)=q_{1} q_{2} q_{3} P\left(A_{1}\right)=q_{1} q_{2} p_{3}+q_{1} p_{2} q_{3}+p_{1} q_{2} q_{3}$,
$P\left(A_{2}\right)=p_{1} p_{2} q_{3}+p_{1} q_{2} p_{3}+q_{1} p_{2} p_{3} \& P\left(A_{3}\right)=p_{1} p_{2} p_{3}$
Poisson approximation to Binomial law:
If $p=\frac{\mu}{n}$, where μ is a positive constant, $0<p<1, n$ is a positive integer, then
$\lim _{n \rightarrow \infty}\binom{n}{i} p^{i} q^{n-i}=e^{-\mu} \frac{\mu^{i}}{i!}$

D1. If corresponding to every point U of an event space S we have by a given rule, a unique real value of $X=X(U)$, i.e. X is a real valued function defined on S. then X is called a random variable. i.e. $X: S \rightarrow R$. The range of function X will be called the spectrum of the random variable.

The spectrum may be discrete or continuous and accordingly the random variable is said to be discrete or continuous.

R1. If $X_{1} \& X_{2}$ are random variables then
(1) $X_{1} X_{2}, \quad C_{1} X_{1}+C_{2} X_{2}, \max \left\{X_{1}, X_{2}\right\}, \min \left\{X_{1}, X_{2}\right\}$ are also random variables
(2) If X is a random variable \& f is a continuous or increasing function then $f(X)$ is also a R.V.
(3) If $\left\{X_{n}\right\}$ be a sequence of random variable then $\sup X_{n}, \operatorname{Inf} X_{n}$,
$\operatorname{Lim} \operatorname{Sup} X_{n}, \operatorname{Lim} \operatorname{Inf} X_{n}$ all are R.V.

D2. By the event $X=a$ we mean the set of all event points U for which $X(U)=a$ i.e. $X=a \equiv\{U \mid X(U)=a\} \therefore P(X=a)=P\{U \mid X(U)=a\}$

D3. Let X be an one - dimensional discrete $R . V$.
taking at most a countably infinite no. of values $x_{1}, x_{2},---$
If with each possible outcomes we associate a no. $p_{i}=\operatorname{Prob}\left(X=x_{i}\right)=p\left(x_{i}\right)$
called the probability of x_{i} such that $p\left(x_{i}\right) \geq 0 \& \sum_{i} p\left(x_{i}\right)=1$ then the function p is called the probability mass function (p.m.f) of the R.V.X
\& the set $\left\{p\left(x_{i}\right)\right\}$ is called the probability distribution of the Random variable X

D4. The distribution function of a random variable X is a function of real variable x to be denoted by $F_{X}(x)$ or $F(x)$ defined in $(-\infty, \infty)$ by
$F(x)=P(-\infty<X \leq x)$

Properties of distribution function:

P1. If $a<b$ \& if $F(x)$ be the distribution function of the random variable X then $P(a<X \leq b)=F(b)-F(a)$

Events $(-\infty<X \leq a) \&(a<X \leq b)$ are mutually exclusive \&
$(-\infty<X \leq a)+(a<X \leq b)=(-\infty<X \leq b)$
$\therefore P\{(-\infty<X \leq a)+(a<X \leq b)\}=P(-\infty<X \leq b)$
$\Rightarrow P(-\infty<X \leq a)+P(a<X \leq b)=P(-\infty<X \leq b)$
$\therefore F(a)+P(a<X \leq b)=F(b)$ i.e. $P(a<X \leq b)=F(b)-F(a)$

$$
F(b)-F(a)=P(a<X \leq b) \geq 0
$$

$\therefore F(b) \geq F(a)$ if $b>a \therefore F(x)$ is a monotonic non decreasing function of x
$P(a \leq X \leq b)=F(b)-F(a)+P(X=a)$
$P(a<X<b)=F(b)-F(a)-P(X=b)$
$P(a \leq X<b)=F(b)-F(a)-P(X=b)+P(X=a)$
P2. $F(-\infty)=0, F(\infty)=1, F(a)-F(a-0)=P(X=a), F(a+0)=F(a)$
Let $A_{n}=(-\infty<X \leq-n)$ then $\left\{A_{n}\right\}$ is a contracting sequence of events such that $\lim _{n \rightarrow \infty} A_{n}=\varphi$
$\therefore P\left(\lim _{n \rightarrow \infty} A_{n}\right)=P(\varphi)=0---(1)$
$\mathrm{P}\left(A_{n}\right)=P(-\infty<X \leq-n)=F(-n) \therefore \lim _{n \rightarrow \infty} P\left(A_{n}\right)=\lim _{n \rightarrow \infty} F(-n)=F(-\infty)---$
$\because P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right) \quad \therefore B y(1) \&(2) \quad F(-\infty)=0$
Let $A_{n}=(-\infty<X \leq n)$ then $\left\{A_{n}\right\}$ is a expanding sequence of events such that $\lim _{n \rightarrow \infty} A_{n}=S$
$\therefore P\left(\lim _{n \rightarrow \infty} A_{n}\right)=P(S)=1---(1)$
$P\left(A_{n}\right)=F(n) \quad \therefore \lim _{n \rightarrow \infty} P\left(A_{n}\right)=\lim _{n \rightarrow \infty} F(n)=F(\infty)---(2)$
$\because P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right) \quad \therefore B y(1) \&(2) \quad F(\infty)=1$

Let $A_{n}=\left(a-\frac{1}{n}<X \leq a\right)$ then $\left\{A_{n}\right\}$ is a contracting sequence of events such that $\lim _{n \rightarrow \infty} A_{n}=(X=a) \therefore P\left(\lim _{n \rightarrow \infty} A_{n}\right)=P(X=a)---(1)$
$\mathrm{P}\left(A_{n}\right)=F(a)-F\left(a-\frac{1}{n}\right) \therefore \lim _{n \rightarrow \infty} P\left(A_{n}\right)=F(a)-F(a-0)---(2)$
$\because P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right) \quad \therefore B y(1) \&(2) \quad F(a)-F(a-0)=P(X=a)$
If $\mathrm{P}(X=a)>0$ then $F(x)$ has a jump discontinuity on the left at $x=a$
Let $A_{n}=\left(a<X \leq a+\frac{1}{n}\right)$ then $\left\{A_{n}\right\}$ is a contracting sequence of events such that $\lim _{n \rightarrow \infty} A_{n}=\varphi \therefore P\left(\lim _{n \rightarrow \infty} A_{n}\right)=0--$ (1)
$P\left(A_{n}\right)=F\left(a+\frac{1}{n}\right)-F(a) \therefore \lim _{n \rightarrow \infty} P\left(A_{n}\right)=F(a+0)-F(a)---(2)$
$\because P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right) \quad \therefore B y(1) \&(2) F(a+0)=F(a)$
$\therefore F(x)$ is continuous on the right at all points

Ex: The spectrum of the random variable X consists of the points $1,2,---, n$ \& $P(X=i)$ is proportional to $\frac{1}{i(i+1)}$. determine the distribution function of X. Compute $P(3<X \leq n) \& P(X>5)$

Soln: Let $P(X=i)=\frac{k}{i(i+1)}$
$\because 1=\sum_{i=1}^{n} P(X=i)=k \sum_{i=1}^{n} \frac{1}{i(i+1)}=k \sum_{i=1}^{n}\left(\frac{1}{i}-\frac{1}{i+1}\right)=k\left(1-\frac{1}{n}\right)=\frac{k n}{n+1} \therefore k=\frac{n+1}{n}$
$\therefore P(X=i)=\frac{n+1}{n i(i+1)}$ If k is an integer then $F(k)=P(X \leq k)=\frac{n+1}{n} \sum_{i=1}^{k} \frac{i}{i+1}=\frac{k(n+1)}{n(k+1)}$
If $k \leq x<k+1$ then $F(x)=P(X \leq x)=\sum_{i=1}^{k} P(X=i)=F(k)=\frac{k(n+1)}{n(k+1)}$
$P(3<X \leq n)=F(n)-F(3)=1-\frac{3(n+1)}{4 n}=\frac{n-3}{4 n}$
$P(X>5)=1-P(X \leq 5)=1-F(5)=1-\frac{5(n+1)}{6 n}=\frac{n-5}{6 n}$

Ex: The distribution function $F(x)$ of a random variable X is defined as

$$
\begin{aligned}
F(x) & =A ;-\infty<x<-1 \\
& =B ;-1 \leq x<0 \\
& =C ; 0 \leq x<2 \\
& =D ; 2 \leq x<\infty, \text { where } A, B, C \& D \text { are constants. Determine the values of } A, B, C \& D .
\end{aligned}
$$

Given that $P(X=0)=\frac{1}{6} \& P(X>1)=\frac{2}{3}$
Soln: $A=F(-\infty)=0, D=F(\infty)=1, \frac{1}{6}=F(0)-F(0-0)=C-B---(1)$
$\frac{2}{3}=P(X>1)=1-P(X \leq 1)=1-F(1)=1-C \therefore C=1-\frac{2}{3}=\frac{1}{3}$
From (1) putting the value of $C, B=\frac{1}{3}-\frac{1}{6}=\frac{1}{6}$

