Some Probability Inequalities

Soumyadeep Das
Assistant Professor, Department of Statistics, Bidhannagar Collge

1 Markov Inequality

Statement: If $P(X \geq 0)=1$ and $E(X)<\infty$, then $P(X \geq t) \leq \frac{E(X)}{t} \forall t>0$.
Proof: Let X be a discrete random variable with p.m.f. ' p '. Then
$E(X)=\sum_{j: j \geq 0} j p(j)=\sum_{j: 0 \leq j<t} j p(j)+\sum_{j: j \geq t} j p(j) \geq \sum_{j: j \geq t} j p(j) \geq \sum_{j: j \geq t} t p(j)=t \sum_{j: j \geq t} p(j)=$ $t P(X \geq t)$.
Hence the proof. Note that, inequalities have been used in two stages. So the equality holds iff the causes of inequality vanish in both stages, i.e. ' $=$ ' holds iff $\{j: p(j)>0$ and $0 \leq j<t\}=\phi($ Null Set $)$ or $\{0\}$ and $\{j: p(j)>0$ and $j \geq t\}=\{t\}$. Combining both, ' $=$ ' holds iff $\{j: p(j)>0\}=\{t\}$ or $\{0, t\}$.
Implication: It provides a non-trivial upper bound (trivial upper bound is 1) in terms of a multiple of $E(X)$ to the right tail probability.

2 Chebyshev's Inequality

Statement: X is a random variable with $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$. Then $P\{|X-\mu|<\sigma t\} \geq 1-\frac{1}{t^{2}} \forall t>0$.
Proof: Let X be a discrete random variable having p.m.f. ' p '. Then
$\sigma^{2}=E(X-\mu)^{2}=\sum_{j: j-\mu \leq-\sigma t}(j-\mu)^{2} p(j)+\sum_{j:-\sigma t<j-\mu<\sigma t}(j-\mu)^{2} p(j)+\sum_{j: j-\mu \geq \sigma t}(j-\mu)^{2} p(j) \geq$
$\sum_{j: j-\mu \leq-\sigma t}(j-\mu)^{2} p(j)+\sum_{j: j-\mu \geq \sigma t}(j-\mu)^{2} p(j)=\sum_{j:|j-\mu| \geq \sigma t}(|j-\mu|)^{2} p(j) \geq \sigma^{2} t^{2} \sum_{j:|j-\mu| \geq \sigma t} p(j)=$ $P\{|X-\mu| \geq \sigma t\}$.
Hence, $P\{|X-\mu|<\sigma t\} \geq 1-\frac{1}{t^{2}}$. ${ }^{\prime}=$ ' holds iff $\{j: p(j)>0$ and $\mu-\sigma t<j<\mu+\sigma t\}=$ ϕ or μ and $\{j: p(j)>0$ and $|j-\mu| \geq \sigma t\}=\{\mu+\sigma t\}$ or $\{\mu-\sigma t\}$ or $\{\mu-\sigma t, \mu+\sigma t\}$. Combining both, ' $=$ ' holds iff $\{j: p(j)>0\}=\{\mu, \mu-\sigma t\}$ or $\{\mu, \mu+\sigma t\}$ or $\{\mu, \mu-\sigma t, \mu+\sigma t\}$.

Implication: It provides a non-trivial lower bound (trivial lower bound is 0) of the probability that the value of a random variable X falling in $(\mu-\sigma t, \mu+\sigma t)$.

3 Exercises

1. Derive Chebyshev's inequality using Markov's inequality.
2. $X \sim \operatorname{Poi}(1)$, then find a non trivial upper bound of $P(X \geq 2)$ and non trivial lower bound of $P(X<4)$.
3. If $X \sim \operatorname{Bin}(n, p)$ then prove that $P\left(\left|\frac{X}{n}-p\right| \geq 0.5\right) \leq \frac{1}{n}$.
4. Practice relevant problems from Rohatgi and Saleh, Outline Vol-2 and other books on Probability.
