OXIDATIVE PHOSPHORYLATION AND ATP SYNTHESIS

Dr. Sudipta Chakraborty Assistant Professor PG Department of Microbiology Bidhannagar College

$$\overrightarrow{\text{rotenone}}$$

$$\overrightarrow{\text{NADH}} \xrightarrow{\bigcirc} Q \longrightarrow \text{Cyt } b \longrightarrow \text{Cyt } c_1 \longrightarrow \text{Cyt } c \longrightarrow \text{Cyt } (a + a_3) \longrightarrow \text{O}_2$$

$$\overrightarrow{\text{antimycin A}}$$

$$\overrightarrow{\text{NADH}} \longrightarrow Q \longrightarrow \text{Cyt } b \xrightarrow{\bigcirc} \text{Cyt } c_1 \longrightarrow \text{Cyt } c \longrightarrow \text{Cyt } (a + a_3) \longrightarrow \text{O}_2$$

$$\overrightarrow{\text{CN}^- \text{ or CO}}$$

$$\overrightarrow{\text{NADH}} \longrightarrow Q \longrightarrow \text{Cyt } b \longrightarrow \text{Cyt } c_1 \longrightarrow \text{Cyt } c \longrightarrow \text{Cyt } (a + a_3) \xrightarrow{\bigcirc} \text{O}_2$$

Treatment with digitonin

$$\begin{split} \ln\left(\frac{C_2}{C_1}\right) &= 2.3(\log \ [\mathrm{H^+}]_{\mathrm{P}} - \log \ [\mathrm{H^+}]_{\mathrm{N}}) \\ &= 2.3(\mathrm{pH_N} - \mathrm{pH_P}) = 2.3 \ \mathrm{\Delta pH} \end{split}$$

and Equation 19-8 reduces to

 $\Delta G = 2.3 RT \,\Delta p H + \mathcal{F} \Delta \psi$

ATP synthesized

a)

Time

(b)

Redox Loop mechanism

Proton pump mechanism

Efraim Racker, 1913–1991

 $F_{o}F_{1}$ binds ATP with very high affinity ($Kd \leq 10^{-12}$ M) and ADP with much lower affinity ($Kd \approx 10^{-5}$ M).

(a)

 $Enz-ATP \implies Enz-(ADP + P_i)$

$$K'_{\rm eq} = \frac{k_{-1}}{k_1} = \frac{24 \ {\rm s}^{-1}}{10 \ {\rm s}^{-1}} = 2.4$$

An Inhibitory Protein (IF1) Prevents ATP Hydrolysis during Ischemia

Chemolithotrophy

✓ Oxidation of Reduced inorganic molecule

✓ Mixotroph

✓ NAD(P)H synthesis and Calvin cycle

✓ Reverse electron flow

Table 1511 Energy yields nom the oxidation of various morganic electron donors						
Electron donor	Chemolithotrophic reaction	Group of chemolithotrophs	E ₀ ' of couple (V)	∆G ⁰ ′ (kJ/reaction)	Number of electrons/reaction	∆G ⁰ ' (kJ/2e [−])
Phosphite ^b	$4 \text{ HPO}_3^{2^-} + \text{SO}_4^{2^-} + \text{H}^+ \rightarrow 4 \text{ HPO}_4^{2^-} + \text{HS}^-$	Phosphite bacteria	-0.69	-91	2	-91
Hydrogen ^b	$H_2 + \tfrac{1}{2} O_2 \rightarrow H_2 O$	Hydrogen bacteria	-0.42	-237.2	2	-237.2
Sulfideb	$HS^{-} + H^{+} + \frac{1}{2}O_2 \rightarrow S^0 + H_2O$	Sulfur bacteria	-0.27	-209.4	2	-209.4
Sulfur ^b	$S^0 + 1\frac{1}{2}O_2 + H_2O \rightarrow SO_4^{2-} + 2H^+$	Sulfur bacteria	-0.20	-587.1	6	-195.7
Ammonium ^c	$NH_4^+ + 1\frac{1}{2}O_2 \rightarrow NO_2^- + 2H^+ + H_2O$	Nitrifying bacteria	+0.34	-274.7	6	-91.6
Nitrite ^b	$NO_2^- + \frac{1}{2}O_2 \rightarrow NO_3^-$	Nitrifying bacteria	+0.43	-74.1	2	-74.1
Ferrous iron ^b	$Fe^{2+} + H^+ + \frac{1}{4}O_2 \rightarrow Fe^{3+} + \frac{1}{2}H_2O$	Iron bacteria	+0.77	-32.9	1	-65.8

Table 13.1 Energy yields from the oxidation of various inorganic electron donors^a

We consider the second the 24 is the constant of the second se

(1) H_2 + fumarate \rightarrow succinate $\Delta G^{0'} = -86 \text{ kJ}$ (2) H_2 + $NO_3^- \rightarrow NO_2^- + H_2O$ $\Delta G^{0'} = -163 \text{ kJ}$ (3) H_2 + $\frac{1}{2}O_2 \rightarrow H_2O$ $\Delta G^{0'} = -237 \text{ kJ}$

